Minerva Journal
ISSN-E: 2697-3650
[6] N. K. Esparza Cruz, Z. Merino Acosta, and H. Guerrero Torres, “Accesibilidad Web en las Instituciones de
Educación Superior del Ecuador: Año 2016,” J. Sci. Res. Rev. Cienc. e Investig., vol. 1, no. CITT2016, pp. 44–48,
2016, doi: 10.26910/issn.2528-8083vol1isscitt2016.2016pp44-48.
[7] Ó. R. G. López, T. M. B. Palacios, and M. B. Mateos, “El índice cuantitativo de calidad web como
instrumento objetivo de medición de la calidad de sitios web corporativos,” Investig. Eur. Dir. y Econ. la
Empresa., vol. 19, no. 1, pp. 16–30, 2013, doi: 10.1016/j.iedee.2012.07.004.
[8] Y. S. Rodríguez, E. Á. Calderón, L. B. Pérez, and C. A. S. Anlas, “State of web accessibility of e-government
portals in Latin America,” Bibl. An. Investig., vol. 16, no. 1, pp. 7–22, 2020.
[9] L. Olsina and M. Bérnabe, “Técnicas Estadísticas para el Análisis de la Calidad de Sitios Web,” no. July,
2019.
[10] D. Sato, H. Takagi, and C. Asakawa, “Accessibility evaluation based on machine learning technique,”
Eighth Int. ACM SIGACCESS Conf. Comput. Access. ASSETS 2006, vol. 2006, pp. 253–254, 2006, doi:
10.1145/1168987.1169041.
[11] M. Zhang, C. Wang, Z. Yu, C. Shen, and J. Bu, “Active learning for web accessibility evaluation,” Proc. 14th
Web All Conf. W4A 2017, 2017, doi: 10.1145/3058555.3058559.
[12] S. Bahram, D. Sen, and R. S. Amant, “Prediction of Web page accessibility based on structural and textual
features,” W4A 2011 - Int. Cross-Disciplinary Conf. Web Access., pp. 5–8, 2011, doi:
10.1145/1969289.1969329.
[13] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo, “A statistical approach to URL-based web page
clustering,” WWW’12 - Proc. 21st Annu. Conf. World Wide Web Companion, pp. 525–526, 2012, doi:
10.1145/2187980.2188109.
[14] M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and
Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.
[15] J. P. Bigham, “Increasing web accessibility by automatically judging alternative text quality,” Int. Conf.
Intell. User Interfaces, Proc. IUI, pp. 349–352, 2007, doi: 10.1145/1216295.1216364.
[16] P. Taylor, C. Fraley, and A. E. Raftery, “Journal of the American Statistical Association and Density
Estimation Model-Based Clustering, Discriminant Analysis, and Density Estimation,” no. May, pp. 37–41, 2012.
[17] T. Gowda and C. Mattmann, “Clustering web pages based on structure and style similarity,” Proc. - 2016
IEEE 17th Int. Conf. Inf. Reuse Integr. IRI 2016, pp. 175–180, 2016, doi: 10.1109/IRI.2016.30.
[18] J. Mucha, M. Snaprud, and A. Nietzio, “Web page clustering for more efficient website accessibility
evaluations,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 9758, pp. 259–266, 2016, doi: 10.1007/978-3-319-41264-1_35.
[19] M. D. Olvera Lobo, M. Aguilar Soto, and E. Ruíz de Osma, “Evaluación de sitios web de postgrados
biomédicos en España Evaluation of websites for biomedical,” vol. 24, no. 1, pp. 47–60, 2012.
[20] Servicio Ecuatoriano de Normalización (INEN), “Reglamento Técnico Ecuatoriano RTE INEN 288
‘Accesibilidad para el Contenido Web,’” pp. 1–6, 2016, [Online]. Available:
http://www.normalizacion.gob.ec/wp-content/uploads/downloads/2016/02/RTE-288.pdf.
105
Vol.4, Special Issue 2023, (pp. 97-105)
Zambrano F. et al. Métodos estadísticos de machine learning aplicados en el estudio de la accesibilidad web: una
revisión de la literatura