I.IntroductionThecharacterizationofbiomaterialsisnecessarytodeterminethemechanical,chemical,andelectrical,amongotherinterestingpropertiesofthematerial[1].Themechanicalpropertyisobtainedfromamechanicaldestructivetest,calledthetensiletest.Basically,itiswhenapullingforceortensionisappliedtomaterialsuntilitfailsorbreaks,providinginformationabouttheYieldStrength,UltimateTensileStrength,Ductility(D),Young'smodulus(E),andPoisson'sratio(ν)ofthematerial[2][3][4].Boneiscomposedofthreedifferenttypesofbones,cortical,trabecular(cancellous),andmarrowbones.Corticalboneisdenseandsolidandsurroundsthemarrowspace,whereastrabecularboneiscomposedofahoneycomb-likenetworkoftrabecularplatesandrodsinterspersedinthebonemarrowcompartment[5].Thosebonesareseparatedintotwomainelements,thecellularcomponent,andanextracellularmatrix.Thematrix,whichisresponsibleforthemechanicalstrengthofthebonetissue,isformedbyanorganicandamineralphase,butaliquidcomponentisalsopresent[6].Byweight,bonecontainsapproximately60%mineral,10%water,andabout30%collagenousmatrix.Themineralcomponentinfluencesthestiffnessofthebone,whereasthecollagennetworkcontributessignificantlytoitsfractureproperties.Typically,engineersconsiderthreebasictaskswhenbiomaterialsarebeingevaluated.Thefirst,understandingthepropertiesofthematerials(strength,fatigue,amongothers);second,theanalysisoftheresponseofthestudymaterialwhenissubjecttoexternalloads(FreeBodyDiagrams)andthird;thedeterminationoftheweakestareasofthematerial(stressconcentrationfactors)[7].Theintendedresearchisorientedtoobtainthestress-strainrelationofdrycaninecadavericcorticalbonesamplesusingthestressconcentrationfactorrrrrranalysis.TheKscfistheratioofthehigheststress(σmax)toreferencestress(σref)ofthegrosscross-section.Thisexperimentalfactorshallbeconsideredaspartoftheengineeringanalysisonthestress-straincurvesincethemechanicalpropertiesofthebiomaterialcanbeaffecteddirectly.Duringthisresearchwillbeseenacombinationofthestressesinteractingonbonesampleswhentheyaresubjecttoaxialloads.Basedonthedestructivetensiletestandthestressconcentrationfactorapproach,itisexpectedtoseenormal,bendingandshearstressesinfluencingthebehaviorofthestress-straincurve.Therefore,thetargetofthisresearchwillbefocusedtoperformasimulationthroughaComputerAidDrafting(CAD)tool(CREOParametric)withtheintenttouseafailurecriterion(VonMissStress,Tresca,Tsai-Wu,etc.)todeterminetheircriticalvaluesbeforeafractureoccursandtocomparethosevaluesamongthem.Also,willservetomodeltheinteractionoftheprincipalstressesandtheeffectthatthosestresseshaveonthebehaviorofthestress-straincurve.Thenewstress-straincurveobtainedfromthesimulationwillbecomparedagainsttheexperimentalcurveobtainedfromthetensiletests.Finally,errorcalculationsaredocumentedtoanalyze,describe,andpredicttheaccuracyandprecisionoftheproposedmodelaswellashowwellisbehaving.9MinervaJournalISSN-E:2697-3650Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) II.DEVELOPMENTA.MechanicalPropertiesoftheBoneThediverseformsandgeometriesofcorticalandtrabecularbonesresultindifferentmechanicalproperties.Themechanicalpropertiesofthebonevaryaccordingtospecies,size,age,amongothercharacteristicsandparameters.Themineralcontentinaboneshowslittlechangeswithincreasingage,andthisbehaviorisobservedinitsstiffness.Incontrast,theenergyabsorbed(toughness)duringthefractureofbonedecreasessignificantlywithincreasingage,whichcontributestoaninverseproportionalrelationship.Themineralphasemostlikelyimpartsstiffnesstothebone,whereasthecollagennetworkcontributessignificantlytoitsfractureproperties[6].Corticalboneisananisotropicmaterial,meaningthatitsmechanicalpropertiesvaryaccordingtothedirectionofload.Thestrengthandtensile/compressivemoduliofcorticalbonealongthelongitudinaldirectionaregreaterthanthosealongtheradialandcircumferentialdirections.Nowadays,minorfluctuationsinmechanicalpropertieshavebeenobservedintheradialversuscircumferentialdirection,recommendingthatcorticalbonecanbeconsideredasatransverselyisotropicmaterial.Whensamplesreceivetensionalongthelongitudinaldirection,corticalboneshowsabilinearstress-strainresponseinwhichadistinctyieldpointseparatesalinearlyelasticregionandaregionoflinearhardeningthatendsabruptlyatafracturestrainoflessthan3.Corticalbonespecimensloadedinthetransversedirectionfailinamorebrittlemannercomparedwiththoseloadedinthelongitudinaldirection[8].B.Stress-StrainCurveThefollowingdiagramhastheintenttoprovidedetailedbackgroundinformationregardingthebehaviorofthefemurbonematerialwhenissubjecttotensionloads.10MinervaJournalISSN-E:2697-3650Fig.1.Stress-StrainDiagram[9]InFig.1above,pointArepresentstheproportionallimit,whichtheslopeofthislineisbetterknownastheYoung’sModulus.ForsegmentAB,thematerialmaystillbeelasticinthesensethatthedeformationsarecompletelyrecoveredwhentheloadisremoved,andthispointBiscalledtheelasticlimitoryieldpoint.PointAandsegmentABarepartoftheelasticregion,whichisgovernedbyHook’slaw.BeyondpointB,Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) C.PrincipalStressesTheengineeringmeasuresofstress(σ)andstrain(ε)aredeterminedfromthemeasuredload(P)anddeflection(δ)usingtheoriginalspecimencross-sectionalareaandlengthas:11MinervaJournalISSN-E:2697-3650Whenthestress(σ)isplottedagainstthestrain(ε),anengineeringstress-straincurvesuchasthatshowninFig.1isobtained[10].Intheearlyphaseofthestress-straincurve,variousmaterialsobeyHooke’slawtoareasonableapproximation,sothatstressisproportionaltostrainwiththeconstantofproportionalitybeingthemodulusofelasticityorYoung’smodulus(E)[11]:Sincebonesvaryingeometry,arepresentationofthemathematicalmodelisneededtoexplainthephysicalphenomenaoccurringduringtheexperimentaltests.Therefore,thefollowingequationrelatedtothecombinationofprincipalstresses(σt)(normal,bending,andshear)willbebrieflydiscussedandfurtherimplementedintheproposedcorticalbonemodel.Thekscf,σn,σbandτareprovidedasfollows:wherestressconcentrationfactor(kscf)istheratioofthehigheststress(σmax)toreferencestress(σref)ofthegrosscross-section:whereFistheappliednormalforceandAisthecross-sectionalareaofthespecimen:whereFistheappliednormalforce,risradio,andIistheinertiamomentAisthecross-sectionalareaofthespecimen:andassumingacylindricalhollowelement,τ,canbeapproximatedasdescribedin(7),whereVistheshearstressvalueandAisthecross-sectionalareaofthespecimen.Thus,substituting(4),(5),(6)and(7)into(3),thefinalcombinedstressesequationisrepresentedasfollows:Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) D.PrincipalStrainsOntheotherhand,principalstrains(maximumandminimumnormalstrains)shallbeconsideredaspartofthecorticalbonebehavior,whichisobtainedfromdifferentiatingaxial,andlateralwithrespecttoθ.Then,thegeneralequationforthetotalprincipalstrainspresentintheexperiment