I.IntroductionThecharacterizationofbiomaterialsisnecessarytodeterminethemechanical,chemical,andelectrical,amongotherinterestingpropertiesofthematerial[1].Themechanicalpropertyisobtainedfromamechanicaldestructivetest,calledthetensiletest.Basically,itiswhenapullingforceortensionisappliedtomaterialsuntilitfailsorbreaks,providinginformationabouttheYieldStrength,UltimateTensileStrength,Ductility(D),Young'smodulus(E),andPoisson'sratio(ν)ofthematerial[2][3][4].Boneiscomposedofthreedifferenttypesofbones,cortical,trabecular(cancellous),andmarrowbones.Corticalboneisdenseandsolidandsurroundsthemarrowspace,whereastrabecularboneiscomposedofahoneycomb-likenetworkoftrabecularplatesandrodsinterspersedinthebonemarrowcompartment[5].Thosebonesareseparatedintotwomainelements,thecellularcomponent,andanextracellularmatrix.Thematrix,whichisresponsibleforthemechanicalstrengthofthebonetissue,isformedbyanorganicandamineralphase,butaliquidcomponentisalsopresent[6].Byweight,bonecontainsapproximately60%mineral,10%water,andabout30%collagenousmatrix.Themineralcomponentinfluencesthestiffnessofthebone,whereasthecollagennetworkcontributessignificantlytoitsfractureproperties.Typically,engineersconsiderthreebasictaskswhenbiomaterialsarebeingevaluated.Thefirst,understandingthepropertiesofthematerials(strength,fatigue,amongothers);second,theanalysisoftheresponseofthestudymaterialwhenissubjecttoexternalloads(FreeBodyDiagrams)andthird;thedeterminationoftheweakestareasofthematerial(stressconcentrationfactors)[7].Theintendedresearchisorientedtoobtainthestress-strainrelationofdrycaninecadavericcorticalbonesamplesusingthestressconcentrationfactorrrrrranalysis.TheKscfistheratioofthehigheststress(σmax)toreferencestress(σref)ofthegrosscross-section.Thisexperimentalfactorshallbeconsideredaspartoftheengineeringanalysisonthestress-straincurvesincethemechanicalpropertiesofthebiomaterialcanbeaffecteddirectly.Duringthisresearchwillbeseenacombinationofthestressesinteractingonbonesampleswhentheyaresubjecttoaxialloads.Basedonthedestructivetensiletestandthestressconcentrationfactorapproach,itisexpectedtoseenormal,bendingandshearstressesinfluencingthebehaviorofthestress-straincurve.Therefore,thetargetofthisresearchwillbefocusedtoperformasimulationthroughaComputerAidDrafting(CAD)tool(CREOParametric)withtheintenttouseafailurecriterion(VonMissStress,Tresca,Tsai-Wu,etc.)todeterminetheircriticalvaluesbeforeafractureoccursandtocomparethosevaluesamongthem.Also,willservetomodeltheinteractionoftheprincipalstressesandtheeffectthatthosestresseshaveonthebehaviorofthestress-straincurve.Thenewstress-straincurveobtainedfromthesimulationwillbecomparedagainsttheexperimentalcurveobtainedfromthetensiletests.Finally,errorcalculationsaredocumentedtoanalyze,describe,andpredicttheaccuracyandprecisionoftheproposedmodelaswellashowwellisbehaving.9MinervaJournalISSN-E:2697-3650Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) II.DEVELOPMENTA.MechanicalPropertiesoftheBoneThediverseformsandgeometriesofcorticalandtrabecularbonesresultindifferentmechanicalproperties.Themechanicalpropertiesofthebonevaryaccordingtospecies,size,age,amongothercharacteristicsandparameters.Themineralcontentinaboneshowslittlechangeswithincreasingage,andthisbehaviorisobservedinitsstiffness.Incontrast,theenergyabsorbed(toughness)duringthefractureofbonedecreasessignificantlywithincreasingage,whichcontributestoaninverseproportionalrelationship.Themineralphasemostlikelyimpartsstiffnesstothebone,whereasthecollagennetworkcontributessignificantlytoitsfractureproperties[6].Corticalboneisananisotropicmaterial,meaningthatitsmechanicalpropertiesvaryaccordingtothedirectionofload.Thestrengthandtensile/compressivemoduliofcorticalbonealongthelongitudinaldirectionaregreaterthanthosealongtheradialandcircumferentialdirections.Nowadays,minorfluctuationsinmechanicalpropertieshavebeenobservedintheradialversuscircumferentialdirection,recommendingthatcorticalbonecanbeconsideredasatransverselyisotropicmaterial.Whensamplesreceivetensionalongthelongitudinaldirection,corticalboneshowsabilinearstress-strainresponseinwhichadistinctyieldpointseparatesalinearlyelasticregionandaregionoflinearhardeningthatendsabruptlyatafracturestrainoflessthan3.Corticalbonespecimensloadedinthetransversedirectionfailinamorebrittlemannercomparedwiththoseloadedinthelongitudinaldirection[8].B.Stress-StrainCurveThefollowingdiagramhastheintenttoprovidedetailedbackgroundinformationregardingthebehaviorofthefemurbonematerialwhenissubjecttotensionloads.10MinervaJournalISSN-E:2697-3650Fig.1.Stress-StrainDiagram[9]InFig.1above,pointArepresentstheproportionallimit,whichtheslopeofthislineisbetterknownastheYoung’sModulus.ForsegmentAB,thematerialmaystillbeelasticinthesensethatthedeformationsarecompletelyrecoveredwhentheloadisremoved,andthispointBiscalledtheelasticlimitoryieldpoint.PointAandsegmentABarepartoftheelasticregion,whichisgovernedbyHook’slaw.BeyondpointB,Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) C.PrincipalStressesTheengineeringmeasuresofstress(σ)andstrain(ε)aredeterminedfromthemeasuredload(P)anddeflection(δ)usingtheoriginalspecimencross-sectionalareaandlengthas:11MinervaJournalISSN-E:2697-3650Whenthestress(σ)isplottedagainstthestrain(ε),anengineeringstress-straincurvesuchasthatshowninFig.1isobtained[10].Intheearlyphaseofthestress-straincurve,variousmaterialsobeyHooke’slawtoareasonableapproximation,sothatstressisproportionaltostrainwiththeconstantofproportionalitybeingthemodulusofelasticityorYoung’smodulus(E)[11]:Sincebonesvaryingeometry,arepresentationofthemathematicalmodelisneededtoexplainthephysicalphenomenaoccurringduringtheexperimentaltests.Therefore,thefollowingequationrelatedtothecombinationofprincipalstresses(σt)(normal,bending,andshear)willbebrieflydiscussedandfurtherimplementedintheproposedcorticalbonemodel.Thekscf,σn,σbandτareprovidedasfollows:wherestressconcentrationfactor(kscf)istheratioofthehigheststress(σmax)toreferencestress(σref)ofthegrosscross-section:whereFistheappliednormalforceandAisthecross-sectionalareaofthespecimen:whereFistheappliednormalforce,risradio,andIistheinertiamomentAisthecross-sectionalareaofthespecimen:andassumingacylindricalhollowelement,τ,canbeapproximatedasdescribedin(7),whereVistheshearstressvalueandAisthecross-sectionalareaofthespecimen.Thus,substituting(4),(5),(6)and(7)into(3),thefinalcombinedstressesequationisrepresentedasfollows:Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) D.PrincipalStrainsOntheotherhand,principalstrains(maximumandminimumnormalstrains)shallbeconsideredaspartofthecorticalbonebehavior,whichisobtainedfromdifferentiatingaxial,andlateralwithrespecttoθ.Then,thegeneralequationforthetotalprincipalstrainspresentintheexperimentisprovidedasfollows:12MinervaJournalISSN-E:2697-3650whereandareobtainedfromthefollowingplanestress-strainformula[12]:whereshearstrainisrelatedwiththeorientationoftheplanesoftheprincipalstrainsasfollows:Accordingtotheexperimentprovidedthereisnovariationinthestress-strainplanes,therefore,θ=0,whichmakesforalldatacollectedfromtheexperimentaltests.Furthermore,noshearstrainswillbeactingontheplanesoftheprincipalstrains,whichmeansthat(10)willbeeliminatedfromtheprincipalstressanalysiswhensimulationtakeplace.Nevertheless,substituting(9)into(8),thecombinedprincipalstrainsequationisrepresentedasfollow:Finally,incorporating(8)and(12)respectively(principalstressesandstrains)intothemathematicalmodel,predictionscanbemadethroughasimulationtodeterminethemainobjectivesofthisresearch,mechanicalproperties,andfailurecriteria.E.FailureCriteriaFailureprinciplesareusedtodetermineandpredictifamaterialwillfailundercertaincircumstances,includingloads,engineeringparameters,mechanicalproperties,amongothers.Fromamechanicsofmaterialperspective,exitsbasicfailurecriteria.Forpurposeofthisresearch,theDistortionEnergy(VonMises),Tresca(MaximumShearStress)andTsai-Wu(FailureIndex)criteriawillbeusedtoevaluatethefracturepointofthebiomaterial.Accordingto[13],VonMises’stheory,aductilesolidwillyieldwhenthedistortionenergydensityreachesacriticalvalueforthatmaterial.Sincethisshouldbetruefortheuniaxialstressstatealso,thecriticalvalueofthedistortionalenergycanbeestimatedfromtheuniaxialtest.Basedonthisexperiment,theanalysisisconsideredastwo–dimensionalplanestressstate,whichindicatedthat,simplifyingtheprincipalVonMisesstressequationasfollows:Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) Areasonablesafetyoffactor(SOF)forengineeringanalysisshouldbegreaterthan1.TheinverseoftheSOFisfailureindex(Tsau-Wu),whichmeansthatFailureIndexsimulationswithlessthan1arenotgoingtofail.III.METHODOLOGYThebonesareconsideredbiologicalmaterials;therefore,healthandsafetymustbepresentthroughouttheresearchtoavoidandminimizeanytypeofrisktoresearchers.Theresearchconductedhasacombinationofmethodologiessinceexperimentaltests,procedures,equipmentprotocolsandobservationswereconductedwiththeintenttoobtainrepresentativerealscenariosregardingthebehavioroftheboneswhentheycriticalaxialloadsareapplied.Ingeneralterms,thisresearchhasfocusedinquantitativeandexperimentalmethodologies.Thecaninecorticalbonesampleswerecollectedbyaveterinarianandtemporarilystoredinafreezerat50degreesFahrenheit.Thehumerusandfemurdrybonesampleswereextractedfromadultsandyoungdogsofmidandlargesizesrespectively.ThesamplesweretransportedinafoamcoolercoveredwithicefromtheVeterinarianHospitaltotheBioimpedanceLaboratoryatthePolytechnicUniversityofPuertoRico.Then,sampleswerecleanedwithwateratroomtemperature(72degreesFahrenheit)toremoveleftovertissuessuchasmuscles,tendons,andligaments.TopreservethedrysamplesingoodshapewereplacedattheBioimpedanceFreezerat50degreesFahrenheitandrelativehumidityof55%.Thissamplepreparationofthecorticalboneswasdividedinto4differentbatchesandeachbatchinto3groupstakingintoconsiderationthefollowingelements:typeofbone,aging,andbonesize,andincludingtheirassociatedparameterssuchaspindiameter,overalllength,thickness,eccentricity,andexternalandinternaldiameter.Thefirstgroupwasidentifiedwithdryfemursamplesforadults’mid-sizebones.Thosesampleswerecutintotwosectionswithlengthsoftwoandoneinchesrespectively.ThesamplestwoincheslongwereusedforadestructivetensiletestwhiletheoneinchwaslabeledandstoredwithinthefreezertobeusedlaterfortheBioimpedancetest.Thefinalsamplesforthisgrouphavepindiameter,overalllength,thickness,andexternalandinternaldiameterdimensionsof0.10,2.0,0.10,0.20,0.5,and0.40inchesrespectively.Thesecondgroupwasidentifiedwithdryhumerussamplesforadults’mid-sizebones.Thosesampleswerecutintotwosectionswithlengthsoftwoandoneinchesrespectively.ThesamplestwoincheslongwereusedforadestructivetensiletestwhiletheoneinchwaslabeledandstoredwithinthefreezertobeusedlaterfortheBioimpedancetest.Thefinalsamplesforthisgrouphavepindiameter,overalllength,thickness,andexternalandinternaldiameterdimensionsof0.10,2.0,0.10,0.20,0.5,and0.40inchesrespectively.Formaximumshearstresstheory,thematerialyieldswhenthemaximumshearstressatapointequalsthecriticalshearstressvalueforthatmaterial.Sincethisshouldbetrueforuniaxialstressstate,wecanusetheresultsfromuniaxialtensiontesttodeterminethemaximumallowableshearstress.Thestressstateinatensilespecimenatthepointofyieldingisgivenby:.Themaximumshearstressiscalculatedas[13]:13MinervaJournalISSN-E:2697-3650TheTsai-Wufailurecriterionisoneofthefirstfailurecriteriastudiedbyscientiststoevaluatefactorofsafetyforcompositematerials.Thisfailurecriteriontakesintoconsiderationthetotalstrainenergyinteractinginthespecimen.Basedontheexperimentproposed,itcanbeassumedabi-dimensionalplanestress,whichsimplifiestheequationtothefollowing:Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) Thethirdgroupwasidentifiedwithdryfemursamplesforadults’mid-sizebones.Thosesampleswerecutintotwosectionswithlengthsoftwoandoneinchesrespectively.ThesamplestwoincheslongwereusedforadestructivetensiletestwhiletheoneinchwaslabeledandstoredwithinthefreezertobeusedlaterfortheBioimpedancetest.Thefinalsamplesforthisgrouphavepindiameter,overalllength,thickness,andexternalandinternaldiameterdimensionsof0.10,1.5,0.10,0.20,0.5,and0.40inchesrespectively.Thefourthgroupwasidentifiedwithdryfemursamplesforyounglarge-sizebones.Thosesampleswerecutintotwosectionswithlengthsoftwoandoneinchesrespectively.ThesamplestwoincheslongwereusedforadestructivetensiletestwhiletheoneinchwaslabeledandstoredwithinthefreezertobeusedlaterforBioimpedancetests.Thefinalsamplesforthisgrouphavepindiameter,length,thickness,andexternalandinternaldiameterdimensionsof0.10,3.0,0.13,0.25,0.65,and0.52inchesrespectively.Thesampleswerecutandmachinedusingalow-speeddiamondsaw.Thediamondsawbladewasimmersedinasalinebathtominimizetheheatcreatedfromfriction,whichhasbeenshowntosignificantlyaffectthematerialproperties,specifically,theplasticityofthecorticalbone.Then,thesectionscutfromthehumerus,andfemurwereplacedinabonechuckandatransversecutwasmadealongtheaxisofinterest.Greatcarewastakenwhenplacingthebonesectionsinabonechucktoensuretheaxisofinterestcoincidedwiththeaxisofcutting.Thecylindricalcorticalbonesampleswereplacedinacustombonechuck,andadrillholewasmadetoremovethecancellous/trabecularbonefromthosesamples.Also,additionalcutsweremadetoleveltheuncutsideand,ifnecessary,trimtheendstofitontheaccessoriesmanufactured,andcustomizedfortheuniversaltensiletestmachinesincetheexistingandavailablegripsareformetalspecimensuseonly.Therefore,aluminumaccessories(grips)weredesignedtominimizethecrushingeffectontheboneendswhenatensionloadisapplied.Oncethegripsweremanufacturedaccordingtotechnicalspecifications,theinitialcalibrationandsetupweredoneproperlyaspresentedinFig.2below.14MinervaJournalISSN-E:2697-3650Fig.2.TensileTestCalibrationandSetupPriortoconductingthedestructivetests,familiarizationandpracticewiththetensiletestmachineanditssoftwarewererequired[14].Also,safety,biohazardandwastedisposal,andbiomaterialshandlingtrainingsweretakentocomplywithUSfederalcodes,standards,andregulations.TheuniversaltensilemachineusedtoperformthetestwasabrandAppliedTestSystems,model910,adouble-columnandratedat10kN.Themachinepre-setvaluesforpre-loadcell,velocityanddisplacementwere100lbs,0.15in/min,and0.05inchesrespectively.Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) IV.RESULTSTheexperimentaltestsofthedrycorticalbonesweredividedintotwodifferenttypesofcharts,thefirstone“LoadvsDisplacement”andtheother“StressvsStrain”.TheFig.3(a)representtheroughdataobtainedfromthetensiletestswhileFig.3(b)representstherelationsbetweenprincipalstressesandstrains,includingthestressconcentrationfactorcoefficient.Thecomparisonsmadebetweenfigures3,5and7arenecessarytodeterminethevariationsbetweenroughdataandmathmodels,consideringtheloadanddisplacementandprincipalstressesandstrainsparameters.Theultimatestrengthvaluesfrom“batch1,samples”obtainedfromfigures3(b),4(b)and5(b)are11(1,595),39(5,656)and27(3,916)MPa(Psi)respectively.Theprincipalstrainsvaluesonfigures3(b),4(b)and5(b)wereobtainedfromultimatestrengthpointssuchas0.0011,0.0062and0.0023respectively.Also,ithasbeennoticedthatbeyondtheseultimatestrengthvalues,thefractureprocessbegins.TheYoung’smodulusfor3(b),4(b)and5(b)wereobtainedasfollows:10(1,450),6,290(912,287)and11,739(1,702,598)MPa(Psi).Thechartsprovidedinfigures3(b),4(b)and5(b)showadirectlyproportionalrelationshipamongthesamples.AstatisticsanalysiswasperformedthroughMinitabforallsamplespresentedinthisarticletoevaluatethestandarddeviations,normaldistribution,amongotherparameters.Fordescriptiveanalysis,itwasassumedconfidencelevelanderror(α)of95%and5%respectively.Thetotal“Load”dataanalyzedforbatch1-sample1was39readingsandtheirmean,standarddeviationandvariancewere0.03819,0.02280and0.00052respectively.ThehistogramofthissampleprovidedinFig.9showedanormaldistributionpattern.The22sampleswereanalyzedandhavebeenobservedthatother21samplesshowedsimilartrendtotheoneobservedinFig.9.TheFig.6showsthefracturedetailinthesamples.Itwasdemonstratedthatsamplesfailedduetostressconcentrationfactorwithacombinationoflongitudinalandobliquefractureeffects.Thepresenceofnormalandbendingstressesalongthesamplesvalidatethatmathematicalmodelservetodescribethephysicalphenomenaencounterintheexperimentaltests.OnFig7,theobliquefracturespredominateagainstthelongitudinal,indicatingthatmorepresenceofbendingwasaffectingthesamples.Subsequently,ithasbeennoticedthatsampleswithnon-uniformgeometriesplayedabigroleintheengineeringanalysis.InordertocalibratethemodelinCREOParametric,thesoftwarerequesttheentryofcertainparametersandmaterialpropertiessuchasYoung’smodulus,Poisson'sratio,yieldstrengthandshearstiffness,whichaccordingto[12]wereinitiallyassumedas6.964x108psi,0.4,4,352psiand2.487x108psirespectively:Basedonexperimentalfracturepoints,whicharethesamethanultimatetensilestrengthvalueobtainedfromFig.3(b),4(b)and5(b)(1,595;5,656and3,916Psirespectively),andCREOsimulationvaluesobtainedfromFig.8(a),whichindicatedaVonMisesstressvalueof4,770.94Psi,acomparisonwasmadebetweenFig.4(b)and8(a)todeterminethepercentageoferrorbetweenthemodelandthephysicalexperiment.Thecorrespondingpercentoferrorwas15.64%.SincethereisnovalidatedstandardoraveragevaluestoworkswithcaninecorticalbonesandtheinitialvaluesusedinCREOareslightlyhigherbecausecorrespondedtohumancorticalbones,thepercentoferrormightbeaffected.15MinervaJournalISSN-E:2697-3650Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) Fig.3.(a)Loadvs.Displacement(Batch1,Sample1)(b)PrincipalStressvs.Strain(Batch1,Sample1)16MinervaJournalISSN-E:2697-3650Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) Fig.5.(a)Loadvs.Displacement(Batch1,Samples4&5)(b)PrincipalStressvs.Strain(Batch1,Samples4&5)17MinervaJournalISSN-E:2697-3650Fig.6(a)LongitudinalFractureonBatch3,Sample1(b)LongitudinalFractureonBatch3,Sample2(c)LongitudinalFractureonBatch3,Sample3Fig.7.TensileTestsResults(a)CloseViewoftheObliqueFractureonBatch1,Sample1(b)ObliqueFractureonBatch3,Sample1(c)ObliqueFractureonBatch3,Sample4Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) Fig.8.FailureCriteriaSimulation:(a)VonMisesStress;(b)FailureIndex;(c)MaximumShearStress18MinervaJournalISSN-E:2697-3650Fig.9.HistogramoftheLoad-(Batch1-Sample1)CONCLUSIONSAcomprehensivemethodologyfordestructivemechanicaltestswereestablishedforpreparingandtestingcaninecadavericcorticalfemurbonesampleswhenaresubjecttoaxialloadsandstressconcentrationfactorstoobtainmechanicalpropertiesofthebiomaterial.Itwasconcludedthat83%ofthedataobtainedfromthe22samplesobservedfrom“Stress-Strain”chartsshowedadirectlyproportionalrelationship.Theultimatetensilestrength(σult)valuesofthedrycorticalfemoralbonesareequaltoyieldstrength(σy)values,implyingthatbonessamplesbehavedasabrittlematerial.Duetothesmallanisotropyofbonematerialanalyzed(2inlengthx0.5indiameter)theeccentricitydistancewasrelativelysmall,thatmightinfluencetheconclusionsofthestudy.Thestandarddeviationsperbatcheswereconsideredwithinacceptableparameters.Theexperimentalresultsoncorticalbonesareclosertothepredictionsmadebythesimulationtoevaluatefailurecriteria,consideringapercentageoferrorof15.64%.Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19) 19MinervaJournalISSN-E:2697-3650ACKNOWLEDGEMENTIwanttothankDr.LuisThomasRamosfrom“SanFranciscodeAsis”VeterinarianHospitaltosupportthisresearchbyprovidingthefemurandhumerusbonesamples.Also,IwanttothankDr.JulioNoriegaMotta,MechanicalEngineeringDepartmentHeadofthePolytechnicUniversityofPuertoRicotosupportwiththemechanicaltensilemachineandmanufacturingengineeringlaboratories.REFERENCES[1]A.BandyopadhyayandS.Bose,CharacterizationofBiomaterials,Waltham,MA:Elsevier,2013.[2]J.Pelleg,MechanicalPropertiesofMaterials,NewYork,London:Springer,2013.[3]M.Jaffe,W.B.Hammond,P.ToliasandA.Treena,CharacterizationofBiomaterials,Newark,NJ:WoodheadPublishing,2012.[4]G.R.Cointry,R.F.N.A.L.Capozza,E.J.RoldanandJ.L.Ferretti,"BiomechanicalBackgroundforaNoninvasiveAssessmentofBoneStrengthandMuscle-BoneInteractions,"JournalMusculoskeletalNeuronInteract,vol.4,no.1,p.1–11,2003.[5]B.Clarke,"NormalBoneAnatomyandPhysiology,"ClinicalJournaloftheAmericanSocietyofNephrology,vol.3,no.3,pp.131-139,2008.[6]M.Basharat,A.IkhlasandJ.Azher,"StudyofMechanicalPropertiesofBonesandMechanicsofBoneFracture,"inProceedingsof60thCongressofISTAM,Rajasthan,India,2015.[7]W.D.Pilkey,D.F.PilkeyandB.Zhuming,Peterson'sStressConcentrationFactors,Hoboken,NJ:JohnWiley&Sons,2020.[8]E.F.Morgan,G.U.UnnikrisnanandA.I.Hussein,"BoneMechanicalPropertiesinHealthyandDiseasedStates,"AnnuRevBiomedEng,vol.20,no.1,pp.119-143,2018.[9]A.J.Velez-Cruz,Stress-StrainDiagram,Bayamon,PR:AVCPress,2022.[10]D.-3.ASTMStandard,StandardTestMethodsforCompositeMaterials,WestConshohocken,PA:ASTMPress,2004.[11]D.Roylance,Stress-StrainCurves,Cambridge,MA:CambridgeMITPress,2001.[12]B.Yang,Stress,StrainandStructuralDynamics,LosAngeles,CA:AcademicPress,2005.[13]T.L.Anderson,FractureMechanics–FundamentalsandApplications,BocadeRaton,FL:CRCPress,2006.[14]ASTMStandard,E-8M-01,StandardTestMethodsforTensileTestingofMetallicMaterials,WestConshohocken,PA:ASTMPress,2004.Velez. Simulation of Combined Stresses and Stress Concentration Factor Effects on a Femur Cortical BonesVol.3, Issue. 8, (pp. 8-19)