Removal of chromium and copper from synthetic water samples using passion fruit peels
PDF
HTML

Keywords

removal
heavy metals
passion fruit shell
chromium
copper

How to Cite

Santamaria Zambrano, Y. A., Segovia Quinonez, V. A., Garcia Muente, S. A., & Sanchez Mendoza, V. A. (2024). Removal of chromium and copper from synthetic water samples using passion fruit peels. Minerva, 5(15), 9-21. https://doi.org/10.47460/minerva.v5i15.170

Abstract

In this work, modified passion fruit husk was used as biomass for the removal of chromium and copper present in the waters. PH, contact time, and particle size were considered experimental factors. Stirring speed, dosage, and temperature were considered constants. The results showed a 69% decrease in chromium using a pH 4, 90 min, and 300 μm composition. For copper, 74.4% was removed at pH 4, with 120 min and 300 μm, based on initial concentrations of 30 ppm for both metals. The results showed that passion fruit peel is a potential effective removal agent for chromium and copper in synthetic waters. This supports its possible application in the purification of metal-contaminated water, which could contribute to environmental protection.

https://doi.org/10.47460/minerva.v5i15.170
PDF
HTML

References

[1] Y. Reyes, I. Vergara, O. Torres, M. D. Lagos, y E. E. G. Jimenez, «Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria», Ing. Investig. Desarro. I2 D, vol. 16, n.o 2, pp. 66-77, 2016.
[2] INEC, «Estadística Ambiental Económica en Gobiernos Autónomos Descentralizados Municipales. Gestión de Residuos Sólidos.», 2019, p. 14. [En línea]. Disponible en: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Municipios_2019/Residuos_solidos_2019/Boletin_Tecnico_Residuos_2019%20v05_2.pdf
[3] L. F. Londoño-Franco, P. T. Londoño-Muñoz, y F. G. Muñoz-García, «Los riesgos de los metales pesados en la salud humana y animal», Biotecnol. En El Sect. Agropecu. Agroindustrial, vol. 14, n.o 2, pp. 145-153, 2016.
[4] G. Campos-Flores, J. Gurreonero-Fernández, y R. Vejarano, «Passion-fruit shell biomass as adsorbent material to remove chromium III from contaminated aqueous mediums», en IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, p. 012110. Accedido: 28 de febrero de 2024. [En línea]. Disponible en: https://iopscience.iop.org/article/10.1088/1757-899X/620/1/012110/meta.
[5] C. A. S. Sierra y H. G. García, «Verificación analítica para las determinaciones de cromo hexavalente en aguas por espectrofotometría», Ing. USBMed, vol. 4, n.o 1, pp. 22-26, 2013.
[6] R. Lora Silva y H. Bonilla Gutiérrez, «Remediación de un suelo de la cuenca alta del Río Bogotá contaminado con los metales pesados cadmio y cromo», Rev. UDCA Actual. Divulg. Científica, vol. 13, n.o 2, pp. 61-70, 2010.
[7] M. G. Valladares-Cisneros, C. Valerio-Cárdenas, P. de la Cruz-Burelo, y R. M. Melgoza-Alemán, «Adsorventes não convencionais, alternativas sustentáveis para o tratamento de águas residuais», Rev. Ing. Univ. Medellín, vol. 16, n.o 31, pp. 55-73, 2017.
[8] A. L. Pantoja-Chamorro, A. M. Hurtado-Benavides, y H. A. Martinez-Correa, «Characterization of passion fruit (Passiflora edulis Sims.) seed oil from agroindustrial waste obtained with supercritical CO 2», Acta Agronómica, vol. 66, n.o 2, pp. 178-185, 2017.
[9] M. Á. López Ramírez et al., «Advanced Oxidation as an Alternative Treatment for Wastewater. A Review», Enfoque UTE, vol. 12, n.o 4, pp. 76-87, 2021.
[10] Ministerio del Ambiente, «Texto Unificado de la Legislación ambiental (TULAS). Libro VI de la Calidad Ambiental. Anexo 1. Norma de calidad Ambiental y Descargas de Efluentes: Recurso Agua.», 2015. [En línea]. Disponible en: https://www.cip.org.ec/attachments/article/1579/PROPUESTA%20ANEXO%201.pdf
[11] A. Rubio-Clemente, E. L. Chica, y G. A. Peñuela, «Application of Fenton process for treating petrochemical wastewater», Ing. Compet., vol. 16, n.o 2, pp. 211-223, 2014.
[12] M. Usman et al., «Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals», Chem. Rev., vol. 118, n.o 7, pp. 3251-3304, abr. 2018, doi: 10.1021/acs.chemrev.7b00224.
[13] L. Yang y G. Yao, «A modified spectrophotometric method for the determination of ferrous ion during the Fenton process», Int. J. Environ. Anal. Chem., vol. 102, n.o 14, pp. 3194-3206, nov. 2022, doi: 10.1080/03067319.2020.1766034.
[14] Y. Pan et al., «Properties of polyphenols and polyphenol-containing wastewaters and their treatment by Fenton/Fenton-like reactions», Sep. Purif. Technol., p. 123905, 2023.
[15] W. Jia et al., «Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties», Chemosphere, p. 139201, 2023.
[16] M. Valderrama, E. Montero del Águila, y L. E. Cruz Pio, «Optimización del proceso Fenton en el tratamiento de lixiviados de rellenos sanitarios», Rev. Soc. Quím. Perú, vol. 82, n.o 4, pp. 454-466, 2016.
[17] X. Zeng et al., «Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction», J. Hazard. Mater., vol. 288, pp. 51-59, 2015.
[18] A. J. K. Kupeta, E. B. Naidoo, y A. E. Ofomaja, «Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass», J. Clean. Prod., vol. 179, pp. 191-209, 2018.
[19] A. Mishra, B. D. Tripathi, y A. K. Rai, «Enhanced biosorption of metal ions from wastewater by Fenton modified Hydrilla verticillata dried biomass», Int. J. Environ. Sci. Technol., vol. 12, n.o 11, pp. 3443-3456, nov. 2015, doi: 10.1007/s13762-014-0708-7.
[20] S. R. Shukla y R. S. Pai, «Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibres», Bioresour. Technol., vol. 96, n.o 13, pp. 1430-1438, 2005.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.