Effects of climate anomalies on the soil-atmosphere interaction model and its convergence with conventional climate models
PDF
HTML

Keywords

DECASAI
climate anomalies
soil-atmosphere interaction
conventional models

How to Cite

Girón, M., & Dam, O. L. (2024). Effects of climate anomalies on the soil-atmosphere interaction model and its convergence with conventional climate models. Minerva, 5(15), 83-94. https://doi.org/10.47460/minerva.v5i15.177

Abstract

The application of the Determination of the Effect of Climate Anomalies on Soil-Atmosphere Interaction (DECASAI) model is described, which allows estimating the water evaporation over bodies of water and soils, based on a thermodynamic and kinetic approach. The model studies seasonal climate anomalies with emphasis on prolonged droughts (ENSO), to predict the vulnerability of selected water bodies, in their hydraulic and pluvial aspects. The model is integrated into the Biotic Pump Theories, evapotranspiration, and other conventional models such as Orchidee using the new absent information provided by the model in their calculations. The analysis estimated the critical radius of the condensed water droplets, for application in the conventional models. The proposed model is sufficiently robust and complementary for use in certain localities located in the Hadley cells, depending on their continentality.

https://doi.org/10.47460/minerva.v5i15.177
PDF
HTML

References

[1] M. Giron, "Mathematical model of the convective behavior of climate variability applied to a cubic Hadley cell," Editorial AutanaBooks, vol. 14, no. 4, pp. 32-44, 2023.
[2] . A. M. Makarieva and V. G. Gorshkov, "Reply to AGCA Meesters et al.'s comment on" Biotic pump of atmospheric moisture as driver of the hydrological cycle on land," Hydrology and Earth System Sciences, p. hess.copernicus.org, 2009.
[3]M. Guimberteau, D. Zhu, F. Maignan, Y. Huang, C. Yue, S. Dantec-Nédélec and P. & Ciais, "ORCHIDEE-MICT (v8. 4.1), a land surface model for the high latitudes: model description and validation," Geoscientific Model Development, vol. 11, no. 1, pp. 121-163, 2018.
[4] Y. M. Zamora , "Modelación del efecto de la variación climática en el balance hídrico en dos cuencas (México y Cuba) bajo un escenario de cambio climático," Mexico, 2018.
[5] N. N. Gattinoni, "Automatización de reportes agrometeorológicos," repositorio.inta.gob.ar, 2020.
[6] A. M. Makarieva, and V. . G. Gorshkov, "The Biotic Pump: Condensation, atmospheric dynamics and climate," International Journal of Water, vol. 5, no. 4, pp. 365-385, 2010.
[7] P. Bunyard, "How the Biotic Pump links the hydrological and the rainforest to climate: ¿Is it for real? ¿How can we prove it?," Universidad Sergio Arboleda, p. repository.usergioarboleda.edu.co, 2014.
[8] A. D. Nobre, "O futuro climático da Amazônia," in Relatório de Avaliação Científica. São José dos Campos, São Paulo, 2014.
[9] P. Bunyard, C. Peña and L. Díaz, "Analysis of meteorological data for la selva station by applying the biotic pump theory," Tecciencia, vol. 9, no. 16, pp. 73-77, 2014.
[10] S. Santiago-Rodríguez, T. Arteaga-Ramírez, D. M. Sangerman-Jarquín, R. Cervantes-Osornio and A. Navarro Bravo, "Evapotranspiración de referencia estimada con Fao-Penman-Monteith, Priestley-Taylor, Hargreaves y RNA," Revista mexicana de ciencias agrícolas, vol. 3, no. 8, pp. 1535-1549, 2012.
[11] Y. Yao, E. Joetzjer, P. Ciais, N. Viovy, F. Cresto Aleina, J. Chave and S. Luyssaert, "Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment," Geoscientific Model Development, vol. 15, no. 20, pp. 7809-7833, 2022.
[12] R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs and B. & Zhao, "The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)," Journal of climate, vol. 30, no. 14, pp. 5419-5454, 2017.
[13] K. Fukushima, H. Kondo and S. Sakata, "Geochemistry of hydroxy acids in sediments—I. Some freshwater and brackish water lakes in Japan," Organic Geochemistry, vol. 18, no. 6, pp. 913-922, 1992.
[14] A. Osman, D. O. Yawson, S. Mariwah and I. Y. Dadson, "Towards a concrete landscape: Assessing the efficiency of land consumption in the Greater Accra Region, Ghana," Plos one, vol. 17, no. 6, p. e0269120, 2022.
[15] M. Giron, "Análisis de convergencia de los resultados de la aplicación del modelo Determinación del Efecto de las Anomalías Climáticas en la Interacción Suelo-Atmósfera (DEACISA/ DECASAI)," in XX Jornadas de Investigación 2023, IV Congreso de Investigación, Ciencia y Tecnologia UNEXPO Puerto Ordaz, Puerto Ordaz, Venezuela, 2023.
[16] "Mission, Shuttle Radar Topography. "SRTM." sf)," Spatial Information, [Online]. Available: https://srtm. csi. cgiar. org/srtmdata. [Accessed 2023].
[17] J. A. V. Jiménez and L. A. Forero, "Complemento en MS. Excel para consulta de propiedades temodinámicas de sustancias puras," Investigaciones aplicadas, vol. 2, no. 2, pp. 23-29, 2008.
[18] J. Pellicer, M. D. Planas and y Hernández , "Una Aplicaciió del potencial de Helmholtz a l'estudi de l'equilibri termodinàmic entre un líquid i el seu vapor, en presència d'efectes superficials.," Revista de física, no. 7, pp. 26-28, 1994.
[19] J. V. Giráldez, K. Vanderlinden and H. F. ten Berge, "La evaporación del agua del suelo bajo control atmosférico.," Estudios de la Zona No Saturada del Suelo. Eds. R. Muñoz-Carpena, A. Ritter, C. Tascón. ICIA: Tenerife: Universidad de Córdoba., no. ISBN 84-699-1258-5, pp. 181-186, 2009.
[20] M. Pacheco Montes, R. Botero and E. Muñoz Ciro, "Los Ríos Voladores y el monstruo de mil cabezas," Revista Ambiental Éolo, vol. 19, no. 14, pp. 12-29, 2020.
[21] A. Nobré, "Qué son los "ríos voladores" de Sudamérica que llevan por aire tanta agua como el Amazonas," 27 8 2017. [Online]. Available: https://www.bbc.com/mundo/noticias-41038097. [Accessed 11 2023].
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.