Thermal-mechanical analysis of the briquetting machine segments in steel industries
PDF (Español (España))
HTML (Español (España))


Finite element

How to Cite

Jaimes, S. (2020). Thermal-mechanical analysis of the briquetting machine segments in steel industries. Minerva, 1(1), 43-57.


A thermal-mechanical analysis of the behavior of the segments of the rollers of the briquetting machines is carried out due to the effect of thermal shock and efforts exerted on the part. It is intended to obtain the main causes that generate this problem, through a mechanical analysis that simulated the behavior in the presence of several thermal gradients. The purpose of the study is to reduce maintenance costs and the continuous replacement and repair of segments, as well as losses in tons of production due to the failure that are of great impact to the industry. This investigation allows us to know to what extent the operating parameters, such as material temperature, pressure, torque, speed of the rollers influence the life of the segments according to their manufacturing material, and based on these the behavior is simulated during the briquetting process.

Keywords: Simulation, Finite element, Briquettes.
PDF (Español (España))
HTML (Español (España))


D. R. Askeland, Ciencia e Ingeniería de Materiales, México: Cengage Learning, 2009.

J. L. G. Velásquez, Mecánica de Fractura, México: Limusa, 2004.

J. E. H. G., Introducción al análisis estructural por elemento finito, Manizales: Centro de Publicaciones Universidad Nacional de Colombia, 2002.

S. H. Avner, Introducción a la Metalurgia Física, México: McGraw-Hill, 1998.

M. B. R. Al-Waked, «CFD simulation of wet cooling towers,» Applied thermal engineering, vol. 26, nº 4, pp. 382-395, 2006.

D. Barbi, L. Neves Filho y V. Silveira Júnior, «Convective heat transfer coefficients evaluation for a portable forced air tunnel,» Applied Thermal Engineering, vol. 30, nº 2-3, pp. 229-233, 2010.

C. Barreno, «Simulación fluido dinámica del túnel de enfriamiento de ánodos verdes de la planta de molienda y compactación de Venalum,» Universidad Nacional Experimental Politécnica "Antonio José de Sucre" Vice-rectorado Puerto Ordáz., Puerto Ordáz, 2016.

Y. Çengel, Transferencia de Calor, México: McGraw-Hill, 2004.

W. Fisher, M. Meir y M. Lustenberger, «Cooling of Green Anodes after forming,» The Minerals, Metals & Materials Society, vol. 4, nº 1, pp. 351-357, 2013.

F. Incropera y D. DeWitt, Fundamentos de Transferencia de Calor, México: Prentice Hall, 1999.

M. W. Meier, Cracking behaviour of anodes, Düsseldorf: Aluminium-Verlag, 2007.

M. J. Morán y H. N. Shapiro, Fundamentos de Termodinamica Tecnica, México: Reverté, 2004.

S. Ramakrishnan, R. Wysk y V. V. Prabhu, «Prediction of process parameters for intelligent control of tunnel freezers using simulation,» Journal of Food Engineering, vol. 65, nº 1, pp. 23-31, 2004.

M. A. Reinheimer, S. Mussati y N. J. Scenna, «Optimization of operating conditions of a cooling tunnel for production of hard candies Original Research Article.,» Journal of Food Engineering, vol. 109, nº 1, pp. 22-31, 2012.

«Progress of Inert Anodes in Aluminium Industry: Review,» Journal of Siberian Federal University, vol. Special, nº Special, pp. 18-30, 2018.


Download data is not yet available.