Statistical machine learning methods applied in the study of web accessibility: a literature review


accesibilidad web
machine learning
aprendizaje no supervisado

How to Cite

Zambrano, F., & Munoz, E. (2022). Statistical machine learning methods applied in the study of web accessibility: a literature review. Minerva, 1(Special), 150-157.


An accessible website refers to the fact that any person, especially those with physical disabilities, can access the content of the website without problems. The objective of this research is the analysis through literature reviews of machine learning methods applied to the study of accessibility in the web portals of Decentralized Autonomous Governments. In addition, a systematic literature review methodology was used to review more than twenty scientific articles related to keywords such as web accessibility, statistics, and machine learning, among others. In the results obtained, several techniques stand out, especially those of unsupervised learning, since their usefulness was observed in several investigations, improving the analysis and understanding of the data. This research has shown that exciting work can be done on web accessibility in institutions, considering that these studies would significantly contribute to improving access to content.


[1] M. Campoverde-Molina, S. Luján-Mora, and L. Valverde, “Análisis de accesibilidad web de las universidades y escuelas politécnicas del Ecuador aplicando la norma NTE INEN ISO/IEC 40500:2012,” pp. 53–68, 2019.
[2] A. Ismail and K. S. Kuppusamy, “Web accessibility investigation and identification of major issues of higher education websites with statistical measures: A case study of college websites,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 3, pp. 901–911, 2022, doi: 10.1016/j.jksuci.2019.03.011.
[3] The World Wide Web Consortium, “Home | Web Accessibility Initiative (WAI) | W3C.” (accessed Jul. 31, 2022).
[4] D. Naranjo-Villota, J. Guaña-Moya, P. Acosta-Vargas, and V. Muirragui-Irrazábal, “Evaluación de la accesibilidad web en institutos acreditados de educación superior del Ecuador,” Rev. Espac., vol. 41, no. 4, p. 5, 2020, [Online]. Available:
[5] T. Acosta, P. Acosta-Vargas, J. Zambrano-Miranda, and S. Lujan-Mora, “Web Accessibility Evaluation of Videos Published on YouTube by Worldwide Top-Ranking Universities,” IEEE Access, vol. 8, pp. 110994–111011, 2020, doi: 10.1109/ACCESS.2020.3002175.
[6] N. K. Esparza Cruz, Z. Merino Acosta, and H. Guerrero Torres, “Accesibilidad Web en las Instituciones de Educación Superior del Ecuador: Año 2016,” J. Sci. Res. Rev. Cienc. e Investig., vol. 1, no. CITT2016, pp. 44–48, 2016, doi: 10.26910/issn.2528-8083vol1isscitt2016.2016pp44-48.
[7] Ó. R. G. López, T. M. B. Palacios, and M. B. Mateos, “El índice cuantitativo de calidad web como instrumento objetivo de medición de la calidad de sitios web corporativos,” Investig. Eur. Dir. y Econ. la Empres., vol. 19, no. 1, pp. 16–30, 2013, doi: 10.1016/j.iedee.2012.07.004.
[8] Y. S. Rodríguez, E. Á. Calderón, L. B. Pérez, and C. A. S. Anlas, “State of web accessibility of e-government portals in Latin America,” Bibl. An. Investig., vol. 16, no. 1, pp. 7–22, 2020.
[9] L. Olsina and M. Bérnabe, “Técnicas Estadísticas para el Análisis de la Calidad de Sitios Web,” no. July, 2019.
[10] D. Sato, H. Takagi, and C. Asakawa, “Accessibility evaluation based on machine learning technique,” Eighth Int. ACM SIGACCESS Conf. Comput. Access. ASSETS 2006, vol. 2006, pp. 253–254, 2006, doi: 10.1145/1168987.1169041.
[11] M. Zhang, C. Wang, Z. Yu, C. Shen, and J. Bu, “Active learning for web accessibility evaluation,” Proc. 14th Web All Conf. W4A 2017, 2017, doi: 10.1145/3058555.3058559.
[12] S. Bahram, D. Sen, and R. S. Amant, “Prediction of Web page accessibility based on structural and textual features,” W4A 2011 - Int. Cross-Disciplinary Conf. Web Access., pp. 5–8, 2011, doi: 10.1145/1969289.1969329.
[13] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo, “A statistical approach to URL-based web page clustering,” WWW’12 - Proc. 21st Annu. Conf. World Wide Web Companion, pp. 525–526, 2012, doi: 10.1145/2187980.2188109.
[14] M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.
[15] J. P. Bigham, “Increasing web accessibility by automatically judging alternative text quality,” Int. Conf. Intell. User Interfaces, Proc. IUI, pp. 349–352, 2007, doi: 10.1145/1216295.1216364.
[16] P. Taylor, C. Fraley, and A. E. Raftery, “Journal of the American Statistical Association and Density Estimation Model-Based Clustering, Discriminant Analysis, and Density Estimation,” no. May, pp. 37–41, 2012.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.