Resumen
This bibliometric study evaluated the scientific output on the use of artificial intelligence (AI) in the study of heavy metals in agriculture, aiming to identify research gaps and emerging trends. A search in Scopus retrieved 127 records; after applying inclusion and exclusion criteria, 58 were discarded and the remaining 69 were analyzed using Bibliometrix and VOSviewer. Graphs were generated to illustrate temporal evolution, country-level production, keyword co-occurrence, and thematic mapping. The publications show a high annual growth rate (42.86%), with China and India as leading contributors. The analysis revealed emerging research lines in fertilization, bioremediation, and intelligent monitoring, as well as gaps in food toxicology, input validation, rural training with AI, and the use of conversational interfaces such as ChatGPT for sustainable agriculture. These findings provide a strategic foundation to guide future interdisciplinary research in the agro-environmental field.
Citas
V. H. U. Eze et al., “Integrating IoT sensors and machine learning for sustainable precision agroecology: enhancing crop resilience and resource efficiency through data-driven strategies, challenges, and future prospects”, Discov. Agric., vol. 3, no. 1, p. 83, May 2025. doi: 10.1007/s44279-025-00247-y.
H. Zhang, Y. Liu, Y. Wang, Y. Li, and Y. Chen, “Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China”, J. Clean. Prod., vol. 273, p. 122858, Nov. 2020. doi: 10.1016/j.jclepro.2020.122858.
L. Shi et al., “Modeling phytoremediation of heavy metal contaminated soils through machine learning”, J. Hazard. Mater., vol. 441, p. 129904, Jan. 2023. doi: 10.1016/j.jhazmat.2022.129904.
R. Cavalcante and R. D. De Souza, “Artificial intelligence in agriculture: Benefits, challenges, and trends”, Appl. Sci., vol. 13, no. 13, p. 7405, Jun. 2023. doi: 10.3390/app13137405.
Y. Gao, Z. Duan, L. Zhang, D. Sun, and X. Li, “The status and research progress of cadmium pollution in rice- (Oryza sativa L.) and wheat- (Triticum aestivum L.) cropping systems in China: a critical review”, Toxics, vol. 10, no. 12, p. 794, Dec. 2022. doi: 10.3390/toxics10120794.
A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey”, Comput. Electron. Agric., vol. 147, pp. 70-90, Apr. 2018. doi: 10.1016/j.compag.2018.02.016.
Q.-Q. Peng et al., “Bridging the gap: Limitations of machine learning in real-world prediction of heavy metal accumulation in rice in Hunan province”, Agronomy, vol. 15, no. 6, p. 1478, Jun. 2025, doi: 10.3390/agronomy15061478.
S. Neme, “Detección de metales pesados en pesticidas por ICP-MS”, Tesis de Químico, Pontificia Universidad Católica del Perú, Lima, Perú, 2025.
L. Espina-Romero et al., “Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and perspectives”, Sustainability, vol. 15, no. 16, p. 12176, Aug. 2023. doi: 10.3390/su151612176..
C. Krupitzer, “Generative artificial intelligence in the agri-food value chain - overview, potential, and research challenges”, Front. Food. Sci. Technol., vol. 4, p. 1473357, Sep. 2024. doi: 10.3389/frfst.2024.1473357.
E. A. Oliveira et al., “Global scientific production in the pre-Covid-19 Era: An analysis of 53 countries for 22 years”, An. Acad. Bras. Ciênc., vol. 94, no. suppl 3, p. e20201428, Dec. 2022. doi: 10.1590/0001-3765202220201428.
K. Chinnannan, P. Somagattu, H. Yammanuru, U. K Reddy, and P. Nimmakayala, “Health risk assessment of heavy metals in soil and vegetables from major agricultural sites of Ohio and West Virginia”, Biocatal. Agric. Biotechnol., vol. 57, p. 103108, Apr. 2024. doi: 10.1016/j.bcab.2024.103108.
J. A. Ramírez, D. L. Mendoza, and E. J. Asnate, “Competitividad de la industria agroexportadora del arándano en el Perú, 2015-2019”, Revistaalfa, vol. 8, no. 22, pp. 256-272, Jan. 2024. doi: 10.33996/revistaalfa.v8i22.263
M. Mamani et al., “Contenido de metales pesados en los peces en el Perú: una revisión sistémica”, RIIARn, vol. 12, no. 1, pp. 131-141, Abr. 2025, doi: 10.53287/ejdm7553mt10z.
R. Siche and N. Siche, “El modelo de lenguaje basado en inteligencia artificial sensible - ChatGPT: Análisis bibliométrico y posibles usos en la agricultura y pecuaria”, Sci. agropecu., vol. 14, no. 1, pp. 111-116, Mar. 2023. doi: 10.17268/sci.agropecu.2023.010.
G. Gupta and S. Kumar, “Applications of AI in precision agriculture”, Discov Agric, vol. 3, no. 1, p. 61, Apr. 2025. doi: 10.1007/s44279-025-00220-9.