Multivariate methods for constructing composite indices in cultural management: a literature review
PDF
HTML

Keywords

Multivariate methods
composite indicators
cultural management

How to Cite

Barreiro Linzan, M. D., & Lelly. (2023). Multivariate methods for constructing composite indices in cultural management: a literature review. Minerva, 4(10), 31-39. https://doi.org/10.47460/minerva.v4i10.93

Abstract

Every cultural institution providing services to external users must be frequently evaluated to know user satisfaction and management optimally; multivariate methods are an alternative in constructing indexes due to the goodness of the techniques in interrelating a set of characteristics
simultaneously. To initiate the research, a bibliographic search was carried out using keywords such as "multivariate methods," "composite indicators," "public management," "quality service," and "user satisfaction." As a result, the most frequently found techniques are multiple linear and logistic regression, factorial, cluster analysis, canonical correlation, principal components and correspondence analysis, variable selection, and construction of composite indexes. It is concluded that multivariate methods are optimal methodologies for constructing composite indexes. However, a methodology based on multivariate techniques applied in cultural management measurements in a standard way still needs to be improved.

https://doi.org/10.47460/minerva.v4i10.93
PDF
HTML

References

[1] P. J. Saturno, “The invasion of compound indicators. Risks and benefits for the management of the quality,” Rev. Calid. Asist., vol. 19, no. 6, pp. 407–415, 2004, doi: 10.1016/s1134-282x(04)77732-5.
[2] M. Márquez and A. Mejías, “Dimensiones De La Calidad Del Servicio Ofrecido Por El Departamento De Ingeniería Industrial De La Unet,” Universidad, Cienc. y Tecnol., vol. 17, no. 67, pp. 68–74, 2013.
[3] A. Carrasquilla-Batista, A. Chacón-Rodríguez, K. Núñez-Montero, O. Gómez-Espinoza, J. Valverde-Cerdas, and M. Guerrero-Barrantes, “Regresión lineal simple y múltiple: aplicación en la predicción de variables naturales relacionadas con el crecimiento microalgal,” Rev. Tecnol. en Marcha, vol. 29, no. 8, p. 33, 2016, doi: 10.18845/tm.v29i8.2983.
[4] Á. Gómez Degraves, “Técnicas estadísticas multivariantes para valorar la satisfacción de clientes,” 2021, [Online]. Available: https://tauniversity.org/sites/default/files/articulo_tecnicas_estadisticas_multivariantes_para_valorar_la_satisfaccion_de_clientes.pdf.
[8] K. P. Romero, “Análisis factorial exploratorio mediante el uso de las,” vol. 5, pp. 903–924, 2020, [Online]. Available: https://doi.org/10.5281/zenodo.4453224.
[9] C. D. Helfrich, Y. F. Li, D. C. Mohr, M. Meterko, and A. E. Sales, “Assessing an organizational culture instrument based on the Competing Values Framework: Exploratory and confirmatory factor analyses,” Implement. Sci., vol. 2, no. 1, 2007, doi: 10.1186/1748-5908-2-13.
[10] I. Aguado Moralejo, C. Echebarria Miguel, and J. M. Barrutia Legarreta, “Aplicación de un análisis clúster para el estudio de la segregación social en el municipio de Bilbao,” Boletín la Asoc. Geógrafos Españoles, no. 81, pp. 1–35, 2019, doi: 10.21138/bage.2763.
[11] C. Joaquín Duany, “ANÁLISIS ESTADÍSTICO DE INDICADORES DE CALIDAD DEL HOSPITAL ‘DR. JOAQUÍN CASTILLO DUANY,’” pp. 1–17, 2013.
[12] J. Polanco, “El papel del análisis por componentes principales en la evaluación de redes de control de la calidad del aire,” Comun. en Estadística, vol. 9, no. 2, pp. 271–294, 2016.
[13] J. A. Arciniegas and A. A. Mejías, “Perception of the quality of services provided by the Military University of Granada based on the Servqualing scale, with factorial analysis and multiple regression,” Comuni@cción, vol. 8, no. 1, pp. 26–36, 2017, [Online]. Available: http://www.scielo.org.pe/scielo.php?
script=sci_arttext&pid=S2219-71682017000100003&lng=es&nrm=iso&tlng=es.
[14] M. Greenacre, La práctica del análisis de correspondencias, vol. 44, no. 8. 2008.
[15] V. H. Algañaraz Soria, “El ‘Análisis de Correspondencias Múltiples’ como herramienta metodológica de síntesis teórica y empírica. Su aporte al estudio del locus universitario privado argentino (1955-1983),” Rev. Latinoam. Metodol. las Ciencias Soc., vol. 6, no. 1, pp. e003–e003, 2016.
[16] R. C. Elisondo and M. F. Melgar, “Museos virtuales y enseñanza creativa en arquitectura y diseño,” ReiDoCrea Rev. electrónica Investig. Docencia Creat., no. 2016, pp. 154–166, 2020, doi: 10.30827/digibug.57751.
[17] L. Maria, L. Useche, and C. M. Rodríguez, “A student's academic index using multivariate techniques. To cite this version: HAL Id : hal-03551705,” HAL open Sci., 2022.
[18] M. Ziaabadi, M. Malakootian, M. R. Zare Mehrjerdi, S. A. Jalaee, and H. Mehrabi Boshrabadi, “How to use the composite indicator and linear programming model for determine sustainable tourism,” J. Environ. Heal. Sci. Eng., vol. 15, no. 1, pp. 1–11, 2017, doi: 10.1186/s40201-017-0271-5.
[19] S. M. Famurewa, C. Stenström, M. Asplund, D. Galar, and U. Kumar, “Composite indicator for railway infrastructure management,” J. Mod. Transp., vol. 22, no. 4, pp. 214–224, 2014, doi: 10.1007/s40534-014-0051-1.
[20] A. Deepak, D. Kumar, and V. Sharma, “Developing an effectiveness index for biomedical waste management in Indian states using a composite indicators approach,” Environ. Sci. Pollut. Res., vol. 28, no. 45, pp. 64014–64029, 2021, doi: 10.1007/s11356-021-13940-4.
[21] P. Centorrino, A. Corbetta, E. Cristiani, and E. Onofri, “Managing crowded museums: Visitors flow measurement, analysis, modeling, and optimization,” J. Comput. Sci., vol. 53, p. 101357, 2021, doi: 10.1016/j.jocs.2021.101357.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.