Diseño y construcción de edificios de ahorro de energía en climas variados: enfoque bioclimático y sostenibilidad
PDF (English)
HTML (English)

Palabras clave

arquitectura
enfoque bioclimático
sostenibilidad
ambiente

Cómo citar

Benavides Santacruz, W. A., & Carranco Muñoz, J. M. (2023). Diseño y construcción de edificios de ahorro de energía en climas variados: enfoque bioclimático y sostenibilidad. Minerva, 2023(Special), 124-135. https://doi.org/10.47460/minerva.v2023iSpecial.130

Resumen

Se presenta una investigación que permitirá explorar cómo el diseño y la construcción de edificios de energía casi nula se pueden abordar desde una perspectiva bioclimática, teniendo en cuenta factores como la orientación, la ventilación natural, el uso de materiales sostenibles y estrategias de eficiencia energética. Se presentan algunos casos de estudio en diferentes climas y regiones para comprender cómo se adaptan los principios bioclimáticos a diversas condiciones ambientales y geográficas. La metodología es documental y se enfoca en la revisión de artículos publicados en revistas de base de datos Scopus principalmente, de años recientes. Los principales resultados muestran que las construcciones sostenibles son necesarias para la conservación del ambiente, pero además favorecen la vida humana y la reutilización de materia prima biodegradable.

https://doi.org/10.47460/minerva.v2023iSpecial.130
PDF (English)
HTML (English)

Citas

[1] A. T. Nguyen and S. Reiter, “Bioclimatism in architecture: An evolutionary perspective,” International Journal of Design and Nature and Ecodynamics, vol. 12, no. 1, pp. 16–29, 2017, doi: 10.2495/DNE-V12-N1-16-29.
[2] Ken Yeang and Llewelyn Davies Yeang, “Ecoskyscrapers and Ecomimesis: New tall building typologies”.
[3] C. Chongdong, “Model design and analysis of the evaluation system of regional characteristics of green buildings,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 19, pp. 1–8, 2017.
[4] J. Victoria, S. A. Mahayuddin, W. A. Z. W. Zaharuddin, S. N. Harun, and B. Ismail, “Bioclimatic Design Approach in Dayak Traditional Longhouse,” in Procedia Engineering, 2017, pp. 562–570. doi: 10.1016/j.proeng.2017.04.215.
[5] B. Bajçinovci, “Ecological architecture in response over the centuries. A case study: Ulqin of Adriatic sea,” Ecology, Environment and Conservation, vol. 23, no. 2, pp. 740–743, 2017.
[6] F. Yusta-Garcia, C. Semidor, and D. Bruneau, “Passive architecture in very hot climate: A simple and flexible bioclimatic approach for architects,” in Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2017, pp. 4445–4452.
[7] M. Davidová, “Breathing artifacts of urban bioclimatic layers for the post‐anthropocene urban environment,” Sustainability (Switzerland), vol. 13, no. 20, 2021, doi: 10.3390/su132011307.
[8] N. Ć. Ignjatović, A. Vranješ, D. Ignjatović, D. Milenić, and O. Krunić, “Sustainable modularity approach to facilities development based on geothermal energy potential,” Applied Sciences (Switzerland), vol. 11, no. 6, 2021, doi: 10.3390/app11062691.
[9] F. Fedorik, R. Heikkilä, T. Makkonen, and A. Haapala, “Integration of structural health control in BIM for Current and future residential buildings,” in ISARC 2017 - Proceedings of the 34th International Symposium on Automation and Robotics in Construction, 2017, pp. 134–139. doi: 10.22260/isarc2017/0018.
[10] A. Moreno-Rangel, “Passivhaus,” Encyclopedia, vol. 1, no. 1, pp. 20–29, Dec. 2020, doi: 10.3390/encyclopedia1010005.
[11] C. Chongdong, “Model design and analysis of the evaluation system of regional characteristics of green buildings,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 19, pp. 1–8, 2017.
[12] S. Hong, Y. Tang, X. Zhang, S. Wang, and Z. Zhang, “Multiple orientations research on heat transfer capabilities of ultra-thin loop heat pipes with various channel configurations,” Kexue Tongbao/Chinese Science Bulletin, vol. 62, no. 7, pp. 721–729, 2017, doi: 10.1360/N972016-00036.
[13] G. Cantuária, B. Marques, J. P. Silva, and M. C. Guedes, “Low energy, low-tech building design for the extreme cold of Antarctica,” in Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2017, pp. 3906–3913.
[14] A. Trombadore, M. Sala, and P. P. Congiatu, “Sustainable eco-architecture for Sustainable eco-tourism: The Strategic Plan and pilot projects of Asinara Island,” in Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2017, pp. 4357–4364.
[15] L. Pajek and M. Košir, “Can building energy performance be predicted by a bioclimatic potential analysis? Case study of the Alpine-Adriatic region,” Energy Build, vol. 139, pp. 160–173, 2017, doi: 10.1016/j.enbuild.2017.01.035.
[16] A. Holstov, G. Farmer, and B. Bridgens, “Sustainable materialization of responsive architecture,” Sustainability (Switzerland), vol. 9, no. 3, 2017, doi: 10.3390/su9030435.
[17] D. Craig and R. Schiano-Phan, “Limitations of environmental assessment methods for bioclimatic building design,” in Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2017, pp. 393–400.
[18] G. Scudo, Shading Architectures—Bioclimatic Approach to “Well-Tempered” Civic Spaces. 2021. doi: 10.1007/978-3-030-59328-5_22.
[19] “https://www-scopus-com.bibliotecavirtual.udla.edu.ec/search/form.uri?display=basic#basic.”
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.

Descargas

La descarga de datos todavía no está disponible.