Counting prime numbers in arithmetic sequences
PDF
HTML

Keywords

Counting function of prime numbers
primality criterion
deterministic algorithm
pure terms in arithmetic sequences
mixed terms in arithmetic sequences

How to Cite

Suárez Suri, P. R. (2023). Counting prime numbers in arithmetic sequences. Minerva, 4(10), 122-134. https://doi.org/10.47460/minerva.v4i10.111

Abstract

This paper presents the theoretical elements that support the calculation of the prime number counting function, π(x), based on properties of the sequences (6n-1) and (6n+1), n ≥ 1. As a result, Sufficient primality criteria are exposed for the terms of both sequences that support a deterministic computational algorithm that reduces the number of operations in calculating the function π(x) by exonerating all multiples of 3 from the analysis. In analyzing the primality of a particular term, the divisions by factor 3 are excluded. Such an algorithm can be applied to the search for prime numbers in each sequence separately, a possibility that allows approximately half the time of number search in practical applications.

https://doi.org/10.47460/minerva.v4i10.111
PDF
HTML

References

[1] V. Arroyo, «Estudio sobre primalidad con el algoritmo AKS,» Madrid, 2020.
[2] R. Martínez Zocón, L. Ortiz Céspedes, J. Horna Mercedes y A. Zavaleta Quipuscoa, «Algoritmos para pruebas de primalidad,» Selecciones Matemáticas, vol. 1, nº 02, p. 8, agosto-diciembre 2014.
[3] S. A. Ramírez Gajardo, Y. F. Vasquez Cea y C. Zenteno Acuña, «Curvas elípticas y test de primalidad,» Chillan, 2019.
[4] Z. Castellanos y Á. SandoVal, «Test de primalidad de secuencia de raíz digital Tesla Zollner,» ResearchGate, p. 8,
septiembre 2022.
[5] M. Allen Weiss, Estructuras de datos en Java, cuarta edición ed., Pearson Educación, S.A., 2013, 2013, p. 945.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.