Abstract
This paper presents the theoretical elements that support the calculation of the prime number counting function, π(x), based on properties of the sequences (6n-1) and (6n+1), n ≥ 1. As a result, Sufficient primality criteria are exposed for the terms of both sequences that support a deterministic computational algorithm that reduces the number of operations in calculating the function π(x) by exonerating all multiples of 3 from the analysis. In analyzing the primality of a particular term, the divisions by factor 3 are excluded. Such an algorithm can be applied to the search for prime numbers in each sequence separately, a possibility that allows approximately half the time of number search in practical applications.
References
[2] R. Martínez Zocón, L. Ortiz Céspedes, J. Horna Mercedes y A. Zavaleta Quipuscoa, «Algoritmos para pruebas de primalidad,» Selecciones Matemáticas, vol. 1, nº 02, p. 8, agosto-diciembre 2014.
[3] S. A. Ramírez Gajardo, Y. F. Vasquez Cea y C. Zenteno Acuña, «Curvas elípticas y test de primalidad,» Chillan, 2019.
[4] Z. Castellanos y Á. SandoVal, «Test de primalidad de secuencia de raíz digital Tesla Zollner,» ResearchGate, p. 8,
septiembre 2022.
[5] M. Allen Weiss, Estructuras de datos en Java, cuarta edición ed., Pearson Educación, S.A., 2013, 2013, p. 945.
This work is licensed under a Creative Commons Attribution 4.0 International License.